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Abstract—This paper proposes a dynamic pricing and
revenue-driven service federation strategy based on a
Deep Q-Network (DQN) to instantly and automatically decide
federation across different service provider domains, each in-
troduces dynamic service prices offering to its customers and
towards other domains. A dynamic pricing model is considered in
this work based on the analysis of real pricing data collected from
public cloud provider, and upon this a dynamic arrival process
as a result of the price changes is proposed for formulating the
service federation problem as a Markov Decision Problem (MDP).
In this work, several reinforcement learning algorithms are
developed to solve the problem, and the presented results show
that the DQN method reached 90% of the optimal revenue and
outperformed existing state-of-the-art strategies, and it can learn
the federation pricing dynamics to make optimum federation
decisions according to price changes.

Index Terms—federation, pricing, reinforcement learning, op-
timization

I. INTRODUCTION

The profound shift towards Network Function Virtualization
and Softwarization has yielded a rapidly increasing number
of virtualized network functions and applications, such as
NATs [1], firewalls [2], and even radio access functions [3],
composing network services deployed over a virtualized
infrastructure. These services usually reside on the premises
of service providers (e.g., cloud providers, mobile network
operators) and their needs for flexible on-demand deployment
(i.e., the service can be deployed anytime and anywhere),
higher capacity and lower latency operation are ever-growing.
In this paper, we take the role of a service provider at a mobile
edge (with limited resource capacity) that aims at maximizing
its long-term revenue.

On the one hand, in order to satisfy stringent service
requirements, service providers need to over-dimension their
infrastructure to face system dynamics with high reliability,
which results in additional cost and waste of resources. On
the other hand, service providers have limited coverage and
footprint, and may not have enough resources in certain areas
where the service is requested. In this way, when facing a deficit
of resources to accommodate new service requests, they need
to lease services or resources from another provider according
to already-established terms and service level agreements, i.e.,
service federation.

To this end, procedures to automatize such service federation
processes have already been developed [4], [5]. Moreover,
different algorithms have been proposed to decide optimum

resource federation and service composition across multi-
domains (see details in §II). However, all the previous work
considers static pricing models. To the best of our knowledge,
this is the first work that addresses realistic pricing dynamics
when making decisions to deploy services locally or rely on
federated infrastructure.

Such decisions have important implications on the final price
offered to potential customers. However, the price associated
with federated resources has complex time dynamics [6].
Specifically, the end-user price depends on several variables,
such as the availability of resources over time, the demands
of service requests, and other business factors, which are
unknown to the requester. Price fluctuations may lead to
service rejections, even when there are resources available
in the federated domain, due to negative financial revenue
when infrastructure costs are overly high. To address this
problem, in this paper we explore an opportunistic strategy: if
we were able to learn patterns in price dynamics associated
with federated resources, we then could exploit this knowledge
opportunistically, that is, (i) use federated resources when
prices are low relative to future prices, even if local resources
are available, and (ii) use local resources when federated
resources are expensive.

The idea of exploiting resources opportunistically is not new
as it has been proposed before in the context of radio access and
other systems [7]. However, most of these works assume some
sort of knowledge concerning the stochastic distribution of the
system or some unrealistic conditions such as independence
across random data samples. These assumptions however fail
to capture real dynamics of prices over time, which is essential
to make correct federation decisions. Conversely, we advocate
in this paper for model-free reinforcement learning solutions
that break us free from making such unpractical assumptions.
In this way, only driven by measured data, our solution is able
to learn patterns inherent to real pricing dynamics, and take
federation decisions that maximize the long term revenue.

In summary, the contributions of this paper are as follows:

• We analyze the price dynamics of a public cloud provider,
and take it as reference for the service pricing of a
federated domain. By considering the observed pricing
fluctuations, we are able to obtain higher revenues in the
federation process;

• We derive a dynamic arrival process, which is impacted
by the fluctuations in the service prices;



• We characterize a federated multi-domain scenario as an
online decision-making problem that aims at maximizing
revenue;

• We design and implement two model-free mechanisms
based on reinforcement learning: Q-table solutions, and a
Deep Q-network (DQN) solution. Both require training
phase to derive a policy for revenue maximization; and

• We perform a thorough data-driven performance evalua-
tion of our solution, and compare our approach against
state-of-the-art solutions.

Our results show that, compared to an oracle, our DQN
approach achieves 90% of the optimal performance with zero
knowledge a-priori about system dynamics.

The rest of the paper is organized as follows. First, §II
presents the related work of existing architectures for federa-
tion, federation-related algorithms, and auction-based resource
allocation solutions. Then, we introduce the business scenario
we consider in §III. In §IV-A, we analyze the price dynamics
of our system, and in §IV-B the arrival process of incoming
service requests. Later, we formulate an optimization problem
in §V to maximize the provider’s revenue, and a Markov
Decision Problem in §VI that motivates our DQN approach and
other benchmark algorithms to solve the problem. Following, in
§VII, we present the experimental evaluation of the algorithms.
Finally, in §VIII we conclude the work and point towards
future directions.

II. RELATED WORK

In [8], federation mechanisms are classified as (i) open
federation, where the connectivity between administrative
domains changes dynamically; or as (ii) pre-established fed-
eration, where connections are fixed using business contracts
and service level agreements. Compared to our work, the
manuscript in [8] provides insights into the interactions between
the administrative domains; however, it lacks an economic
analysis.

There are already several platforms that enable a federation.
In the 5GEx project [4], the administrative domains use
UNIFY [9], which allows them to expose and exchange
information about available resources for federation. In the
5G-TRANSFORMER project [10]–[13], a service orchestrator
module provides a pre-established service federation to peering
administrative domains. A similar approach is adopted by the
5Growth project [5], [14], as the platform enables various feder-
ation approaches such as multi-level multi-domain orchestration
or open federation using distributed ledger technologies [15].
These works [4], [5], [9]–[15] provide detailed technical and
architectural workflows of how federation can be realized in
various scenarios for different use cases but do not present
algorithmic solutions to actually make decisions. In our view,
our work is complementary and it can be adapted as a tool to
generate profitable federation decisions in most of the described
solutions and platforms.

In 2012, the work in [16], a federation is identified as a
challenging mechanism to tackle in virtual network embed-
dings. The work described in [17] proposes an adaptation

of an Alternating Direction Method of Multipliers (ADMM)
based algorithm, named AD3 (Alternating Directions Dual
Decomposition) [18]. The adapted algorithm solves the Virtual
Network Embedding (VNE) problem in a decentralized fashion,
and in a multi-domain scenario with each domain offering
fixed pricing. [19] formulates the VNE problem in a scenario
of non-cooperative domains that bid prices offered to deploy
incoming Virtual Network Functions Forwarding Graphs (VNF-
FG). The authors of [19] propose a framework based on Actor-
Critic [20] agents for domains to decide the bidding prices,
and for clients to maximize the number of deployed VNF-
FGs. These works [16], [17], [19] study the VNE problem
in-depth but focus on generating decisions that are technically
efficient rather than economically profitable. Only [19] uses a
Cost-based First Fit (CFF) heuristic algorithm to decide for
low-price resources; however, compared to our work, they do
not consider real price dynamics.

The same applies to [21], which proposes a heuristic to
assess the VNE in multi-domain networks. The proposed
solution, called consolidation-based, is a greedy approach that
gives preference to the deployment of VNFs in master paths
before service function chains (SFC) suffer from branching.
The heuristic is enhanced with a feedback mechanism that
prevents itself from deploying the SFC over links and servers
that have recently failed. Similarly, as before, they assume static
costs and revenues. Additionally, compared to [21], we focus
on learning real scenarios and generating online decisions.

The work in [22] presents a distributed solution to compute
a VNE in multi-domain networks. The algorithm is inspired by
a large-scale graph processing [23] system that uses message-
passing to decentralize the computation of the embedding
of incoming VNF-FGs. The proposed algorithm iterates over
what authors call “super steps”, until each domain has locally
deployed a part of the VNF-FG. Finally, a master node collects
all feasible solutions proposed by each domain and selects
the best. The solution ignores costs in the multi-domain
infrastructure and the authors lay focus on scalability.

The authors in [24] focus on the problem of migrating
service VNFs among domains that belong to a cooperative
federation. Inspired by the flow/state migration problem [25],
the paper proposes an algorithm that coordinates each domain
orchestration, so as to assess the migration in a finite time,
and satisfying non-functional requirements. In contrast to our
work, they ignore the price associated with hosting VNFs
across different domains.

The work in [26] offers a complete view of a multiple
provider federation in 5G networks, and experimental valida-
tion of a heuristic approach on top of the described federation
model. The work presents an abstraction of the resources that
each provider offers to its neighbors within the federation. The
abstraction, called the Bis-Bis node, represents a graph with
an abstraction of the resources and connections offered to the
peering providers. Unlike our work, the authors use a heuristic
algorithm that is based on a greedy backtracking approach [27].
The algorithm is evaluated by means of scalability and running
time in a multiple provider experimental setup. Unlike our
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solution, the authors in [26] assume fixed prices.

Regarding dynamic pricing scenarios, works such as [28]
and [29] tackle resource allocation in mobile edge computing
(MEC) and heterogeneous cloud scenarios in an auction-
based manner. [28] proposes TCDA (Truthful Combinatorial
Double Auction), a solution to determine both the pricing
and resource allocation in a MEC scenario where mobile
devices bid to obtain resources in the Edge. TCDA solves
the associated optimization problem, and ensures that the
pricing and resource allocation satisfies properties as social
welfare maximization, locality constraints, and budget balance;
among others. [29] solves the offloading of computing tasks
in a heterogeneous cloud scenario where also users’ mobile
phones can execute offloaded tasks. Mobile phone users ask
and offer resources to offload and accommodate computing
tasks. As in [28], users bid to other mobile users to offload
their tasks, and [29] proposes a greedy algorithm to solve
both the allocation of such tasks, and derive payments of the
auctioning phase. The proposed greedy reverse auctioning
algorithm shows near optimal results by means of utility,
execution time, and energy consumption. Moreover, it also
satisfies economic properties as truthfulness, and individual
rationality (as [28]); and it has been implemented as an Android
app. Though both works [28], [29] provide good insights about
allocating heterogeneous resources when the auction prices are
controlled by the platform, their solutions focus on auction-
based platforms, not on scenarios when prices are not under
the platform control, which is the most common scenario.
Moreover, [28], [29] do not use real-world pricing data in their
analysis and have to rely on assumptions.

In summary, to the best of our knowledge, the existing
literature has not yet considered real price dynamics when
deciding the best domain to allocate services. To this end, we
rely on data-driven model-free approaches based on Deep Q
Networks (DQN), which learns patterns in the data without
making any assumptions about the system to maximize long-
term revenue.

III. BUSINESS MODEL

We start by analyzing the business model of interest for this
work. Inspired by the market of cloud services, we consider
a system where a service provider offers cloud resources or
services at a service price rate p(t) that may vary over time
depending on the operator’s pricing model. In case a user
is willing to pay such a price to deploy service σ, it makes
the request, which arrives at the system at time a(σ), and
leaves the system at time d(σ). Once a user request arrives
at the service provider, the latter decides the best location
to deploy the service σ: either on its own infrastructure, or
on another domain within the federation it belongs to — see
Fig. 1b. Hence, upon each service σ deployment requested by a
user, the service provider can take an action x(σ) := {0, 1, 2}
indicating, respectively, whether the service is deployed locally,
deployed in the federated domain, or rejected. Note that the
user is not aware of the available resources in the service
provider infrastructure (nor in the federation). Users are only
aware of the price offered for their request p(t)(σ). See Table I
for a summary of our notation.

Our goal is to maximize the long-term revenue of the service
provider. The pricing model does have an impact on the
arrival process of the service requests: intuitively, lower prices
incentivize a higher user arrival rate. We will discuss the pricing
model and the related arrival process model later in §IV-A
and §IV-B, respectively. Importantly, however, once there is an
agreement between customer and provider, the customer pays
the agreed fee pa(σ) for every time slot t during which the
service is active, i.e., for every t : a(σ) ≤ t ≤ d(σ). In contrast,

TABLE I: Notation table

Symbol Definition
σ service

p(t)(σ) price rate [$/hour] to deploy a service σ at time t
f (t)(σ) federation cost [$/hour] at time t for service σ
a(σ) arrival time of service σ
d(σ) departure time of service σ
x(σ) deployment action for service σ

c(σ),m(σ), h(σ) CPU, memory, and disk asked by a service σ
Cl,Ml, Hl local domain CPU, memory, and disk
Cf ,Mf , Hf federation pool of CPU, memory, and disk
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Fig. 2: Service prices of a cloud provider during 2020.

however, should the service σ be deployed in the federated
domain, the service provider has to pay the federated domain
agents a time-varying fee f (t)(σ),∀t : a(σ) ≤ t ≤ d(σ) that
depends on the dynamics in the federation. If the service is
deployed neither locally nor in the federated domain, then
the service will be rejected and, in this case, the customer
does not pay the service fee, and thus there is no income
for the service provider. This business model allows us to
exploit opportunistically (uncertain) price fluctuations, which
can provide substantial cost savings, yet provide certainty to
the end-users, which is essential for vertical sectors.

As a result, every t we have two concurrent cash flows:
(Fig. 1a) The service provider uses local resources to grant the

request, and therefore the agent’s income is equal to
p
a(σ)

(σ),∀t : a(σ) ≤ t ≤ d(σ);
(Fig. 1b) The service provider uses federated resources, and

therefore the provider gets p
a(σ)

(σ) − f (t)(σ),∀t :
a(σ) ≤ t ≤ d(σ), where f (t)(σ) is the federation
cost, which fluctuates over time.

In this way, we can denote the agent’s income, which represents
the instantaneous revenue of the service provider, at time t as
follows:

r(t)(Xt) :=
∑

σ: x(σ)=0
a(σ)≤t≤d(σ)

pa(σ)(σ) +
∑

σ: x(σ)=1
a(σ)≤t≤d(σ)

[
pa(σ)(σ)− f (t)(σ)

]
(1)

where Xt := {x(σ)}σ:a(σ)≤t.
In case the service provider runs out of local resources,

its agent can federate the service x(σ) = 1 at a cost for
the service provider f (t)(σ) — see the right term in (1).
Hence, the availability of resources has an impact on the
instantaneous revenue of the service provider. Note that eq. (1)
also captures the amount of resources associated with each
service σ request since resource-hungry services have a higher
price. In the following, §IV details the three different services
considered, namely, t3a.small, c5.2xlarge, and c5d.4xlarge;
enumerated in ascending amount of resources (see Table II)
and the corresponding price (see Fig. 2).

IV. SYSTEM DYNAMICS

We face three sources of uncertainty in our system: (i) the
pricing model used in federated domains f (t), which may be
highly volatile; (ii) the cost associated with local deployments
(which ultimately drives the service pricing p(t)); and (iii)
the process that characterizes the arrival of customers into
our system, which is certainly associated with the fees we set
(p(t)) in a way that is unknown a priori. We discuss (i) and
(ii) first in §IV-A, and then we discuss (iii) in §IV-B.

A. Pricing
Dynamic pricing mechanisms have become very popular

in cloud computing services because they have the ability to
maximize the cloud provider’s revenue while minimizing the
price of the offered service. The literature presents abundant
research on the topic, being [30] a remarkable example.
However, although the pricing problem has been well studied
and, intuitively, prices shall follow the offer-demand trade-off,
it is very hard to model the underlying pricing mechanisms
applied in practice today. For instance, works such as [6], [31],
[32] present spatio-temporal analyses of the pricing method
applied by a large cloud provider but have failed to model it.
Others, such as [33], [34], have applied predictive methods to
this phenomenon, but the proposed solutions pitfall on either
predicting price peaks, or the tendency of price over time.

Let us analyze, in the following, the price dynamics of
service instances from a major cloud provider1. To this end,
we collected price data of every service instance offered by
the cloud provider between 29/02/2012 and 31/07/2020 for the
“Paris, Europe” region. Fig. 2 depicts the price evolution of three
service instances over a time window of five months, trivially
chosen. Specifically, we have selected t3a.small, c5.2xlarge,
and c5d.4xlarge from AWS EC2 Spot instances because they
are the closest, in terms of resource requirements, to the
services used in a multi-domain case study—a similar scenario
as ours–from a well-known network operator in Spain [35].

The figure illustrates the fact that, though prices are
reasonably stable over medium-long time periods, there occur a
large number of short-time, yet sporadic, fluctuations that may
play havoc with standard price prediction mechanisms. These
fluctuations may be due to sudden changes in the arrival rate
of the users but also to unknown external phenomena, such as
energy costs or system failures. We argue in this paper that it
is paramount to design a decision-making model that considers
such random dynamic events to explore service federation
(with unknown pricing model f (t)) opportunistically such that
we can maximize our agent’s revenue.

Motivated by the above, we model the service price rates as

p(t)(σ) = (1 + P )l(t)(σ) (2)

where l(t)(σ) is the local deployment cost (which depends
on uncertain phenomena, as explained above), and P is the
marginal profit over the local deployment cost as a choice of
the operator.

1https://docs.aws.amazon.com/cli/latest/reference/ec2/
describe-spot-price-history.html [Accessed 30/11/2020]
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B. User arrivals

Let A denote the stochastic process modeling the arrival of
users at the system. Intuitively, this shall be a non-homogeneous
price-dependant process, i.e., a lower price p(t) incentivize
higher arrival rate λ(t). In the context of cloud services, this
phenomenon has been studied in, for instance, [36], where
λ(t) = f(p(t)) and f satisfying the following assumption.

Assumption 1. The arrival rate function is a non-negative
f(p(t)) ≥ 0, decreasing f ′(p(t)) < 0, and concave function
f ′′(p(t)) < 0; with no slope when the price is at its minimum
f ′(0) = 0, and taking zero values when the price is at its
maximum f(1) = 0. Additionally, the arrival rate function
should drastically drop to zero as the price reaches its
maximum f ′(p(t)) −−−−→

p(t)→1
−∞, with p(t) ∈ [0, 1] being the

normalized price.

Then, given Assumption 1,

f(p(t)) := k
(
1− (p(t))a

)b
(3)

where k, a, and b are parameters that depend on the system
and hence have to be estimated, e.g., by a learning model. Note
that the arrival rate function f(p(t)) is a positive, decreasing,
concave function that is 0 when the dynamic price reaches its
maximum.

To obtain the proper arrival rate based on f(p(t)(σ)), the
function must be properly defined, and the service price p(t)

normalized accordingly. Thus, in this work we redefine f as
follows:

f(p(t)(σ)) :=

k
(
1−

(
p(t)(σ)
K·M

)a)b
, p(t)(σ) ≤ K ·M

0, p(t)(σ) > K ·M
(4)

where M = maxσ,t{l(t)(σ)} is the maximum local deployment
cost over time across all services σ (e.g., t3a.small), and K
is a normalization constant to control the decay of the arrival
rate. Note that (4) satisfies Assumption 1.

Using this model and our service pricing model in §IV-A,
we plot in Fig. 3 the arrival rate (4) associated with the services
that are used in this work. As stated in equation (2), the service
price (hence the arrival rate) depends on the local deployment
cost l(t)(σ) and margin P . Therefore, the mean arrival rate will
decrease with high marginal benefit P or high local deployment
costs (see Fig. 4).

V. OPTIMIZATION PROBLEM

Given the above, hereafter, we formulate an optimization
problem with the goal of maximizing the revenue of a service
provider in a multi-domain federation scenario. As introduced
earlier, in our scenario, a local service provider may use a
limited set of resources available locally, or resort to a federated
resource provider (at a fee). Specifically, let (Cl,Ml, Hl) ∈ N3

denote, respectively, the total number of CPUs, memory, and
disk resources available locally. Similarly, (Cf ,Mf , Hf ) ∈ N3

denote the respective resources at federated domain.
A service σ that arrives at time a(σ) is characterized by a

set of resource requirements
(
c(σ),m(σ), h(σ)

)
∈ N3. Upon

each request, the local agent makes a decision x(σ), which
shall guarantee that the resource capacity is not exhausted at
any time. To this end, we have the following constraints:

Cl ≥
∑

σ: x(σ)=0
a(σ)≤t
d(σ)>t

c(σ), Ml ≥
∑

σ: x(σ)=0
a(σ)≤t
d(σ)>t

m(σ), Hl ≥
∑

σ: x(σ)=0
a(σ)≤t
d(σ)>t

h(σ), ∀t

(5)
Cf ≥

∑
σ: x(σ)=1
a(σ)≤t
d(σ)>t

c(σ), Mf ≥
∑

σ: x(σ)=1
a(σ)≤t
d(σ)>t

m(σ), Hf ≥
∑

σ: x(σ)=1
a(σ)≤t
d(σ)>t

h(σ), ∀t

(6)
Constraints (5) refer to the conservation of local domain
resources, and constraints (6) to the conservation of the
federated pool of resources.

Our objective is to choose the most appropriate action for
every service request such that the obtained income (according
to our business model in §III) over the long run is maximized.
Hence, our optimization problem becomes:

Problem 1 (Federation deployment problem).

max
XT

lim
T→∞

1

T

T∑
t

r(t) (Xt) (7)

s.t. (5), (6)
x(σ) ∈ {0, 1, 2}, ∀x(σ) ∈ XT

with r(t) (Xt) being the instantaneous reward defined in eq. (1).

The complexity of Problem 1 is analyzed in Lemma 1.

Lemma 1. Problem 1 is NP-complete.

Proof. Problem 1 can be cast into the knapsack problem [37],
which is well-known to be NP-complete. To do the mapping,
take a problem instance with T = 1, no federation resources
Cf =Mf = Hf = 0, and assume that all services (i) do not
leave the system, i.e., d(σ) > T, ∀σ; (ii) only ask for CPU
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resources, i.e., c(σ) > 0 ∧ m(σ) = h(σ) = 0, ∀σ; (iii) have
a service price equal to the requested CPU pa(σ) = c(σ), ∀σ;
and (iv) arrive at T = 1, that is, a(σ) = 1, ∀σ. The resulting
instance of our problem becomes

max
x(σ)∈XT

∑
σ:x(σ)=0

c(σ) (8)

s.t. Cl ≥
∑

σ:x(σ)=0

c(σ) (9)

which is the knapsack problem with c(σ) being the object
weights, and Cl the sack capacity.

Apart from being NP-complete, our problem is not imple-
mentable as it has an overly large number of decision variables
(more so as we increase the time horizon T towards infinity). It
also requires knowledge of future arrivals of services requests
and service/federation prices. For this reason, we resort to an
online decision.

VI. MARKOV DECISION PROBLEM (MDP)
The optimization problem stated in §V is equivalent to an

MDP [38], which we solve using three different algorithms
introduced in this section. Any MDP is well defined given the
tuple

(
S,A, PXT , r(t)

)
, which describes, respectively, state

set, action set, transition probabilities (given XT ), and reward
function.

The state space S contains information related to (i)
the local and federation cost of all services {σ}; (ii)
the resources required for each arriving service σ; and
(iii) the available resources at both the local domain and
federation domains. Specifically, the state has information
concerning

(
{δk(t)l , δk

(t)
f }k∈{C,M,H}, {σ : a(σ) = t}

)
, where

{σ : a(σ) = t} contains the service requests at time t, and δ(t)Cl
and δ(t)Cf are the normalized residual resource capacities, e.g.,

δ
(t)
Cl

=
1

Cl

∑
σ:x(σ)=0

a(σ)≤t<d(σ)

c(σ), δ
(t)
Cf

=
1

Cf

∑
σ:x(σ)=1

a(σ)≤t<d(σ)

c(σ)

(10)
for the case of CPU resources. Note that we redefine the
state space for each algorithm presented next, for notation
convenience.

Conversely, the action space is A = {0, 1, 2} corresponding
to the “accept at local domain”, “accept at federated domain”,
and “reject” actions upon incoming service requests. That is,
the action variable x(σ) of the optimization problem in §V
belongs to the action space A of the MDP.

The transition probabilities are given by the function
Px(σt)(s

(t+1)|s(t)) ∈ [0, 1], that is, how likely it is to end up
in state s(t+1) after taking action x(σt) in state s(t); with σt
being the service arriving at time t. The transition probabilities
function Px(σt) is known given (i) the arrivals of new services;
(ii) if previous services were deployed locally, federated, or
rejected; (iii) the lifetime d(σ)− a(σ) of each running service
σ; and (iv) their local and federation cost.

In the MDP, the rewards r(t) correspond to the instantaneous
reward already defined in (1) for the optimization problem in
§V. The goal of the MDP is to derive a policy π : S 7→ A that
in each state s(t) takes an action x(σt) that maximizes the
long-term reward. However, the agent does not know the state
transition probabilities Px(σt)(s

(t+1)|s(t)), since the future
federation cost f (t)(σ) is an unknown random variable set by
the federated agents. Moreover, the instantaneous reward (1)
is also unknown, as it also depends on the federation cost
f (t)(σ) random variable.

The following three algorithms propose different policies π
with the goal of maximizing the expected long-term reward

Ex(σt)∼π

[∑
t

γtr(t)(π)

]

with γ ∈ [0, 1] being the discount factor for future rewards.
This long-term reward refers to the income of the operator in
the business scenario (§III). Among the presented algorithms,
§VI-A proposes a greedy policy, whilst §VI-B and §VI-C
derive the agent policy using Q-learning, a form of model-free
reinforcement learning. Contrary to traditional dynamic pro-
gramming methods, Q-learning solves a MDP without knowing
the transition probabilities Px(σt) and instantaneous rewards
r(t) (see [39]). Hence, both §VI-B and §VI-C derive policies
that solve our MDP by learning the transition probabilities
and real-world pricing dynamics. Using reinforcement learning
prevents us from making assumptions of the real-world pricing



Algorithm 1: Greedy algorithm

Data: environment, T , {σt}Tt=0

Result: {x(σt)}Tt=0

1 for t ∈ [0, T ] do
2 if c(σt)

Clδ
(t)
Cl

≤ 1 ∧ m(σt)

Mlδ
(t)
Ml

≤ 1 ∧ h(σt)

Hlδ
(t)
Hl

≤ 1 then

3 x(σt) = 0;
4 else
5 if c(σt)

Cf δ
(t)
Cf

≤ 1 ∧ m(σt)

Mfδ
(t)
Mf

≤ 1 ∧ h(σt)

Hf δ
(t)
Hf

≤ 1 then

6 x(σt) = 1;
7 else
8 x(σt) = 2;
9 end

10 end
11 r(t), s(t+1) = environment.takeAction(x(σt));
12 end

traces used in this work (see Fig. 2), but rather learn about
real pricing events and how to act upon them.

A. Greedy algorithm

In this section, we introduce a greedy approach, which ren-
ders a simple strategy suitable for comparison. This approach
consists of a simple policy where each service request is locally
deployed as long as there is the availability of local resources
or federated resources. If there are no resources in the whole
system, the service request is rejected.

In the context of our MDP (described in §VI), the state
vector used by the greedy approach is:

s(t) =

(
δ
(t)
Cl
, δ

(t)
Ml
, δ

(t)
Hl
, δ

(t)
Cf
, δ

(t)
Mf
, δ

(t)
Hf
,
c(σt)

Clδ
(t)
Cl

,
m(σt)

Mlδ
(t)
Ml

,
h(σt)

Hlδ
(t)
Hl

)
(11)

where the first six elements are the normalized amount of
residual resources (available) (cpu, memory, disk) at time t,
and the last three represent the normalized amount of requested
resources. In this way, this greedy policy, presented in
pseudocode fashion in Algorithm 1, is described as follows:

π(0|s(t)) = 1,
c(σt)

Clδ
(t)
Cl

≤ 1 ∧ m(σt)

Mlδ
(t)
Ml

≤ 1 ∧ h(σt)

Hlδ
(t)
Hl

≤ 1

π(1|s(t)) = 1,
c(σt)

Clδ
(t)
Cl

> 1 ∧ m(σt)

Mlδ
(t)
Ml

> 1 ∧ h(σt)

Hlδ
(t)
Hl

> 1

∧ c(σt)

Cfδ
(t)
Cf

≤ 1 ∧ m(σt)

Mfδ
(t)
Mf

≤ 1 ∧ h(σt)

Hfδ
(t)
Hf

≤ 1

π(2|s(t)) = 1, otherwise (12)

B. Q-table algorithm

In this section, we adapt the solution presented in [40],
which is a Q-table-based reinforcement-learning solution to the
MDP. Q-table is a simple reinforcement learning realization
based on a lookup table to search over the S × A space.

The rows of the table present the state space S of the MDP,
and the columns present the set of actions that can be taken
for each state, i.e., the set A = {0, 1, 2}. Each state s(t) is
represented by normalized values that represent the average
residual resource availability for local and federated resources,
the most demanding resource of the arriving service, the
instantaneous reward was we to deploy the service locally,
r
(t)
x0 , and its federation cost:

s(t) =

(
δ
(t)
Cl

+ δ
(t)
Ml

+ δ
(t)
Hl

3
,
δ
(t)
Cf

+ δ
(t)
Mf

+ δ
(t)
Hf

3
,

max

{
c(σt)

Clδ
(t)
Cl

,
m(σt)

Mlδ
(t)
Ml

,
h(σt)

Hlδ
(t)
Hl

}
, r(t)x0

, f (t)(σt)

)
(13)

As mentioned earlier, the state transitions are not determin-
istic. As a result, the Q-table requires a training period where
its cells are populated to converge towards the expected future
rewards. That is, Q(s(t), x(σt)) will be equal to the expected
cumulative reward if action x(σt) is taken at state s(t). To
converge towards the expected future rewards, the Q-table
values are filled using the Q-learning recurrence approach
during the training stage, which approximates the Bellman
equation [38]:

Q(s(t), x(σt)) =(1− α)Q(s(t), x(σt))+

α
(
r(t) + γmax

x
Q(s(t+1), x)

)
(14)

where r(t) is the instantaneous reward foreseen after taking ac-
tion x(σt) at state s(t). Note the instantaneous reward is aggre-
gated with the discounted future reward γmaxxQ(s(t+1), x).
The parameters α—the learning rate, and γ—the discounted
factor, are fixed parameters.

In summary, at each time t, a new service request arrives at
the operator agent, who takes action x(σt), and then populates
the Q-table for Q(s(t), x(σt)). However, it must be noted
that the instantaneous reward r(t) is not always positive. For
example, suppose the action x(σt) = 0 for local domain
deployment at s(t) exceeds the local domain capacity. In that
case, the local domain rejects the service deployment, and the
instantaneous reward is negative. In other words, the operator
agent receives a penalty for taking the wrong action at time t.

All the Q-table values are initialized to zero at the start of the
training (t = 0). The training procedure consists of repetitive
runs of a generated set of arrivals for a timing interval [0, T ].
Each training repetition is a single episode and the training set
of arrivals is consistent for Ep episodes. To train this model so
as to learn a policy that maximizes long-term reward, we use
two different policies in the training stage, namely (i) Q-table
legacy, and (ii) Q-table exploration.

On the one hand, the Q-table legacy strategy chooses the
action as:

x(σt) = max
x

{
Q(s(t), x) +

u

1 + e

}
(15)

where e ∈ {1, . . . , Ep} is the current training episode, and
u ∼ U{0, 2} is drawn from a discrete uniform distribution. The



Algorithm 2: Q-learning training algorithm
Data: environment, strategy, Ep, T , εmin, εmax, γ
Result:

{
QT [s

(t), x(σt)]
}T
t=0

1 QT ← 0;
2 for e ∈ Ep do
3 for t ∈ [0, T ] do
4 if legacy strategy then
5 u ∼ U{0, 2} ;

6 x(σt) = maxx

{
Q(s(t), x) + u

1+e

}
;

7 end
8 if exploration strategy then
9 ε(e) = e

Ep
(εmax − εmin) + εmin;

10 u ∼ U{0, 1};

11 x(σt) =

{
maxx

{
Q(s(t), x)

}
, u ≥ ε(e)

U{0, 2}, u < ε(e)
;

12 end
13 r(t), s(t+1) = environment.takeAction(x(σt));
14 QT [s

(t), x(σt)] ← (1− α)QT [s(t), x(σt)] +
α
(
r(t) + γmaxaQT [s

(t+1), a]
)
;

15 end
16 end

actions taken in the first episodes (e.g., e = 1) have a larger
random component compared to the last training episodes (e.g.,
e→ Ep). This exploration strategy is used in [40].

On the other hand, the Q-table exploration strategy uses a
standard ε-greedy policy [41]:

x(σt) =

{
maxx

{
Q(s(t), x)

}
, u ≥ ε(e)

u ∼ U{0, 2}, u < ε(e)
(16)

where e is the training episode, and u ∼ U(0, 1) is a random
number drawn from a uniform distribution. Moreover, we
define ε(e) = e

Ep
(εmax − εmin) + εmin, which turns out a

linear interpolation between εmin and εmax. In this way ε(e)
(which defines random exploration) drops as episodes pass.
Algorithm 2 describes both the training procedure of both the
legacy and exploration strategies.

Once the training stage has finished, the followed policy is
applied:

π(x(σt)|s(t)) = 1x(σt)

[
argmax

x
Q(s(t), x)

]
(17)

that is, the action with highest Q-value is selected.

C. Deep Q Network (DQN)

We now present the neural network (NN) approach that this
paper uses to solve the MDP. Specifically, the used NN adapts
the DQN solution described in [42] to the action A and state
spaces S of our MDP, as the solution proposed in [42] was not
designed to solve the studied service federation problem. As
stated in §VI, the goal is to maximize the expected long-term
reward Ex(σt)∼π

[∑
t γ

tr(t)(π)
]
. If Q(s(t), x(σt)) denotes the

action-value function, i.e., a function estimating how good

action x(σt) ∈ A is, given state s(t) ∈ S . The authors of [42]
presented a NN with weights ~w to approximate the action-
value function Q(s(t), x(σt), ~w). Such a NN is refered as the
Q-network (see the NN in Fig. 5).

The output of the Q-network is a layer of 3 neurons that
specify the action-value estimation for each action, namely
the local deployment x(σt) = 0, federation x(σt) = 1,
and rejection x(σt) = 2. The Q-network’s input is the
state representation s(t), which in our case correspond to a
vector containing the normalized residual capacity of local
and federated resources, the normalized amount of resources
demanded by the arriving instance, and the instantaneous
reward if it is locally deployed, as well as its federation cost:

s(t) =

(
δ
(t)
Cl
, δ

(t)
Ml
, δ

(t)
Hl
, δ

(t)
Cf
, δ

(t)
Mf
, δ

(t)
Hf
,

c(σt)

Clδ
(t)
Cl

,
m(σt)

Mlδ
(t)
Ml

,
h(σt)

Hlδ
(t)
Hl

, r(t)x0
, f (t)(σt)

)
(18)

It is worth mentioning that the Q-network of [42] differs with
ours in the number of neurons at the input and output layers,
as both the state (input) and action (output) spaces differ. In
particular, our Q-network has |s(t)| neurons2 at both the input
and hidden layer and three neurons in the output layer, with
all the layers being densely connected. All neurons in the
Q-network use a linear activation, except the hidden neurons,
which use a tanh(·) activation unit.

The Q-network training must update its weights ~w to
achieve the best possible estimation of the action-value
function. As in the Q-table solution presented in §VI-B, the
training procedure is based on the Bellman equation [38]
to converge to the optimal action-value function. That is
Q(s, x, ~wi)→ Q(s, x, ~w∗) as i → ∞ with ~wi denoting the
Q-network weights at iteration i in the training process, and
~w∗ denoting the weights with which the Q-network estimates
the optimal action-value function. Rather than directly using
the Bellman equation recurrence, the Q-network updates its
action-value estimate by changing the weights ~wi. In more
detail, gradient descend on the loss function is used3:

Li(~w) =
[(
r(i) + γmax

x
Q(s(i+1), x, ~wi)

)
−Q(s(i), x(σi), ~w)

]2
(19)

This corresponds to the squared difference between the
discounted reward with the current weights ~wi, and the action-
value estimate given the weights ~w.

An initial approach could be to compute the loss function
Li(~w) for every iteration i in the training stage, e.g., perform an
update as ~wi+1 = δ ~w + ~wi with δ ~w ∝ ∇Li(~w). However, the
states of consequent iterations are very likely to be correlated,
as the arrival rate will not drastically change in the next time
instant (see Fig. 2). To mitigate this phenomenon in the training

2Actually, the Q-network has k|s(t)| neurons at the input and hidden layer,
with k being the number of transitions, as explained latter. However, in the
performance evaluation we use k = 1.

3s(i), x(σi) denote the state and actions taken at iteration i of the training
phase.
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Fig. 5: Deep Q-network with one hidden layer, k = 1, and experience replay training. Non-continuous lines illustrate the training interactions,
while continuous lines are used to show the execution interactions. In the illustration the state s(t) is a vector of only 4 components.

stage, the Q-network computes the loss gradient over past state-
action-reward-state transitions. These transitions are stored into
an Experience memory D with a capacity of up to M past
transitions. As Fig. 5 illustrates, the Environment stores in the
Experience the current transition, and the Experience will make
room for it, if necessary, by removing the oldest transition. At
iteration i of the training stage, the Q-network grabs a mini-
batch of random past transitions

{
(s(τ), x(στ ), r

(τ), s(τ+1))
}
τ

,
and computes the loss function (19) gradient by using the
current weights ~wi. The random transitions τ are uniformly
selected among the M transitions present in the Experience
memory D. Note that using past experience does not only
reduce the weight updates variability4, but it also boosts data
efficiency as each transition is used in many iterations of the
training stage. The Q-network, together with the Experience
and the aforementioned training procedure, is referred as DQN.
Algorithm 3 details the training steps of the DQN using the
RMSprop [43] as gradient descend method.

The state space is represented as in the Q-table algorithm of
§VI-B, and the Q-network input corresponds to a concatenation
of the last k transitions. During the training stage, the Q-
network follows an ε-greedy policy that is later substituted by
the following greedy policy during the test stage:

π(x(σt)|s(t)) = 1x(σt)

[
argmax

x
Q(s(t), x, ~wEp)

]
(20)

with ~wEp being the weights after the last training episode Ep.

4The weights’ updates variability comes as a consequence of the correlation
between samples.

Algorithm 3: DQN training algorithm
Data: environment, Ep, T , M , ε, γ
Result: ~wT+1

1 for e ∈ Ep do
2 environment.reset();
3 initialize φ ∈ R11k;
4 for i ∈ [0, T ] do
5 s(i) = environment.getState();

6 x(σi) =

{
u ∼ U{0, 2} , u < ε

argmaxxQ(s(t), x, ~wi) , u ≥ ε
;

7 r(i), s(i+1) =environment.takeAction(x(σt));
8 D.addExperience((s(i), x(σi), r(i), s(i+1)));
9 {(s(τ), x(στ ), r(τ), s(τ+1))}Mτ = D.sample(M );

10 G0 = 0;
11 for τ ∈ [0,M) do
12 Gτ = βGτ−1 + (1− β)L2

τ−1(~w);
13 ~wτ+1 = ~wτ − α√

Gτ
Lτ−1(~w);

14 end
15 ~wi+1 = ~wMl

;
16 end
17 end

VII. PERFORMANCE EVALUATION

This section presents the experimental evaluation of the
algorithms introduced in §VI, Specifically, we compare the
performance of: (i) the state-of-the-art Q-table solution of [40];
(ii) a variation of [40] that uses an exploration strategy and
Algorithm 2 line 8), which we refer as QtEx (see §VI-B; and



TABLE II: Service requirements (from [35])

t3a.small c5.2xlarge c5d.4xlarge

f
(
p(t)(σ)

)
5 inst.

day
12.5 inst.

day
25 inst.

day

CPUs 2 8 16
Memory 2 GB 16 GB 32 GB
Storage 100 GB 400 GB 800 GB

Life-time 1
192

L 1
8
L L = [96 h, 240 h]

Marginal benefit P = 0.2

TABLE III: Data centers’ resource capacities (from [35])

data center CPU memory disk

local 80 2000 GB 160 GB
federation 480 12000 GB 960 GB

(iii) the DQN-based agent proposed in this paper. We also use
an offline optimal oracle approach, which solves Problem 1 for
a sufficiently large time horizon and assuming known future
prices. Such an approach is unfeasible in practice because
future prices are unknown; we only use it as a means to assess
the optimality of our algorithms empirically.

The scenario we set up for evaluation is based on a
mobile network operator (MNO) federation study case [35]
from a large Spanish provider. In addition, we use the price
evolution of a large cloud provider presented in §IV-A as a
reference of federation and local service fees. Specifically, both
the federation cost f (t)(σ), and local deployment cost l(t)(σ)
correspond to the service prices of our reference cloud
provider in the eu-west-3a region (see Fig 2). Hence,
σ ∈ {t3a.small, c5.2xlarge, c5d.4xlarge}.

A. Experimental setup & environment

All experiments and results in the upcoming sections have
been derived using a Dell Power Edge C6220 with two Intel
Xeon CPU E5-2670 0 @ 2.60GHz, and 95GB of memory.
We use Python 3 and TensorFlow 2.1.0 to implement all
the schemes under evaluation; and AMPL/Gurobi 9.0.2 to
implement our optimal (OPT) benchmark.

As in our reference case study [35], the scenario we assess
is prone to encounter resource scarcity. Our goal is to emulate
the business scenario explained in §III. The MNO (service
provider) employs the above algorithms to generate deployment
decisions for the incoming arrivals of service requests. Once
a service is deployed, it books the requested resources for the
requested lifetime period. Upon reaching the lifetime period,
the deployed service leaves the system. To this end, we consider
two data centers (local and federated) with different capacities.
For our local domain, we select a medium-size data center
from [35]; for our federated domain, we select [35]’s large
data center. The details are depicted in Table III; the federation
domains’ data center has 6x the capacity of the local one,
whereas the local’s has the capacity to host 5x c5d.4xlarge
services from Table II.

We generate service requests following a Poisson process
with arrival rate f(p(t)(σ)), as described in §IV-B, using the
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Fig. 6: Convergence of DQN, QtEx, and Qt after 100 training episodes.

price evolution data from a major cloud provider as mentioned
before. In more detail, k from eq. (4) is set to fit [35]’s
data when the service price reaches its average value p(t)(σ)
(see Table II); and parameters a, b from eq. (4) are set to
a = 2, b = 1

2 as in [36]. Moreover, we set the marginal benefit
P in eq. (2) to P = 0.2 unless otherwise stated (we will
evaluate the sensitivity of our approach to P later). Finally, the
departure times are also obtained from [35], i.e., the lifetime of
each service is determined by a truncated normal distribution
centered in the intervals 1

192L,
1
8L,L specified in Table II.

B. Training

Among the three algorithms presented in §VI, both the
Q-table and the DQN approaches required a preliminary
training phase, which let us fine-tune the different hyper-
parameters empirically to attain the best performance.

In detail, in the case of the Q-table algorithm, the learning
rate and discount factor of the legacy strategy were selected
as in [40], that is α = 0.95 and γ = 0.9, respectively. For the
Q-table explore strategy (QtEx), we used the same learning
rate as in the Q-table legacy strategy, and the epsilon values
decreased from εmax = 0.9 in episode 1, down to εmin = 0.1
in episode 100. We also tested a variety of discount factors γ
between 0.1 and 0.9.

For our DQN approach, we used RMSprop to implement
gradient descend, α = 0.001, and a moving average parameter
β = 0.9. As in the Q-table explore strategy, we tested out
different discount factors (in the loss function (19)) between
0.1 and 0.9. The RMSprop gradient descend was computed
using mini-batches of size M = 30 taken from the Experience
(see line 11 of Algorithm 3). Fig. 6 shows that convergence was
achieved within 20 episodes for the legacy Q-table solution,
while QtEx and DQN converged within 60-70 episodes.

Both the Q-table and DQN algorithms were trained over
Ep = 100 episodes. Each episode spanned over the service
arrivals generated between 29/02/2020 and 02/05/2020. Fig. 7
shows how the discount factor impacts the cumulative reward
of the DQN and the QtEx approaches during the training stage.
None of the algorithms show a monotonic increasing/decreas-
ing tendency with respect to the discount factor. Although, in
general, DQN achieved a higher cumulative reward for higher
values of γ, QtEx obtained the highest cumulative reward
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Fig. 7: Impact of discount γ parameter on DQN (a) and Q-table with
the exploring strategy (b).

given γ = 0.1. This means that QtEx behaves better by relying
on instantaneous rewards, while DQN did better when taking
more into account the future rewards. The non-stationarity of
the service arrivals and the transition probabilities make it
harder to meet a monotonic change in the cumulative reward
over γ. Arrivals are more likely to be bursty, which means
there is no rule of thumb on how much to take into account
the future rewards.

C. Performance

This section shows the performance of the algorithms
described in §VI and trained as detailed in §VII-B. Every
algorithm was tested over the service arrivals generated
between 03/05/2020 and 31/07/2020.

1) Cumulative reward and evolution of decisions: Fig. 8a
illustrates the cumulative reward of each solution over the
aforementioned time-span, Fig. 8b depicts the price evolution
of each service type in the federation domain, and Figs. 8c-
g detail the decision-making evolution as a percentage of
all service requests received at each time instant, for each
of the algorithms under evaluation. Note that OPT refers to
the optimal oracle, which we use as an ideal benchmark as
introduced earlier. Greedy is a simple policy that only federates
when local resources are exhausted and only rejects services
when resources across all domains are exhausted.

Fig. 8a shows that OPT achieves a cumulative reward
of $3117.1, and DQN obtained $2798.88, that is, the DQN
algorithm was 90% as good as an optimal oracle that knows
future service arrivals and prices a priori. On the other
hand, Qt and QtEx only attained a cumulative reward of
$1793.82 and $1892.7, respectively. However, both resulted
in a higher benefit than the greedy baseline approach, which

keep federating

higher federation

higher rejection

federation cost peak

Fig. 8: (a) Cumulative reward of each solution during the May to
July dataset; (b) the normalized federation cost f (t) over time; and
the percentage of instances rejected, federated, or locally deployed
by (c) greedy, (d) OPT, (e) DQN, (f) QtEx, and (g) Qt solution.



barely obtained a cumulative reward equal to $1418.22. The
cumulative reward of each solution starts to diverge noticeably
right after the federation cost for c5d.4xlarge reaches its peak,
between 28/05 and 11/06 (see Fig. 8b). This service is the
most demanding in terms of resources, and accordingly, the
one with the highest associated federation cost.

Fig. 8c depicts the evolution of the decisions made by
our greedy baseline. The plot shows that a tiny portion of
service requests are rejected because the system is properly
dimensioned. It is also evident that this policy is not affected by
price fluctuations (Fig. 8d), which yields inferior performance
in terms of revenue (Fig. 8b). An optimal oracle (Fig. 8c)
is actually more conservative when granting service requests,
with a much larger service rejection rate. This is especially
true for the largest service (c5d.4xlarge). The reason is that
this type of service incurs much larger net price fluctuations.
Consequently, a better policy is to handle this type of service
request conservatively.

Let us now explore the evolution of the decisions made by
the DQN, QtEX, and Qt methods under assessment (Fig. 8e-g).
The DQN algorithm follows a policy πDQN that federates
almost every service, except upon the prospect of price bumps
when this policy rejects requests even if resources are indeed
available. This allows preserving local resources available
during periods when federated resources are expensive, and so
this approach can also keep a low number of rejections. We can
observe that after c5d.4xlarge federation cost reaches its peak,
it increases the percentage of rejections, which helps to prevent
future losses. This is key to deal with the uncertainty a practical
approach such as this one has to deal with (in contrast to OPT)
without being penalized in terms of reward. Conversely, QtEx
and Qt increase or at least keep the same ratio of c5d.4xlarge
services being deployed at the federated domain, as shown in
Fig. 8f and Fig. 8g, respectively. Consequently, both Q-table-
based algorithms achieve a lower cumulative reward because
of the high fees these methods have to pay during sudden
price increases.

2) Resource dynamics: We now plot in Fig. 9 the evolution
of the resource consumption over time for our DQN approach
between 03/05 and 31/07. This plot also shows, with different
colors, whether the resource is consumed by a service deployed
locally or federated, or whether the resource was requested
by a service that was rejected. These results show that disk
is the bottleneck resource in this case; note how this resource
is around 100% of usage at almost any time, both for the
local domain and the federated domain. Even though we have
dimensioned our resources according to the case study of a
large operator [35], these results suggest that both the CPU
and memory resources should be shrunk by 50% without
compromising reward, attaining substantial capital cost savings
with no impact on revenue.

D. Computing complexity

We next present in Fig. 10 the actual time it takes by
each algorithm to expedite decisions over three months (2918
requests). This provides empirical evidence of their computing
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Fig. 9: Resources consumption by DQN γ = 0.9.
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complexity. Unsurprisingly, OPT takes an order of magnitude
more time to run, as it has to explore a vast action space in a
combinatorial problem (note the logarithmic scale of the y-axis)
that is NP -complete (see Lemma 1). More importantly, both
the DQN, QtEx, and Qt approaches perform similarly, reaching
well within 4 minutes with a slight increase in computing time
for our DQN.

To explain the slight increase, we have to look at the number
of operations performed by each solution. Both Qt and QtEx
have to access a Q-table entry to take an action, and that
is a single hash operation since the Q-table is implemented
using Python dictionaries. In contrast, the DQN has to perform
a feed-forward pass in the Q-network to derive an action.
Given that our DQN has two densely connected layers with
input size |s(t)|, and output size 3, the feed-forward performs
two matrix multiplications, in particular tanh

(
s(t) ·W1

)
·W2.

Here, W1,W2 are the weight matrices of the hidden and output
layer, respectively. Since W1 has dimension |s(t)| × |s(t)|, and
W2 has dimension |s(t)| × 3, the DQN feed-forward does



TABLE IV: Resource capacities for deployment A

data center CPUs memory disk

local [48,..., 80] [1200,..., 2000] GB [96,..., 160] GB
federation 480 12000 GB 960 GB

TABLE V: Resource capacities for deployment B

data center CPUs memory disk

local 80 2000 GB 160 GB
federation [0,..., 480] [0,..., 12000] GB [0,..., 960] GB

∣∣s(t)∣∣2 + 3
∣∣s(t)∣∣ multiplications, which explains the slightly

worse run-time of DQN with respect to Qt and QtEx in Fig. 10.
Last, it is worth mentioning that the greedy algorithm spends

a bit more time than the Qt and QtEx solutions, as it performs
between 3 and 6 divisions to determine which action to take
(see lines 2 and 5 of Algorithm 1).

E. Resource dimensioning

Our results above are based upon a specific deployment
choice proposed by a large operator in Spain [35]. We now
evaluate the impact of our algorithms on different deployments.
Importantly, we do not re-train our learning approaches on the
new setups; we simply use the same models trained on [35]’s
scenario. This should give us an insight into the portability of
our approach to generic environments.

To this end, we set up two different deployments: In
Deployment A, we take [35]’s as a baseline and vary the local
resources proportionally from 60% to 100%; In Deployment
B, we take again [35]’s as a baseline and vary the federated
domains from 0% to 600% (that is, 6x the resources available
in our baseline’s federated domain). The details of these two
deployments can be found in Table IV and V, respectively.
Figs. 11 and 12 depict the cumulative reward attained by each
of our algorithms over the same 3-month time period used
before, for Deployment A and B.

On the one hand, in Deployment A, DQN presents a
substantial performance gain over the other approaches, no
matter the size of the local domain. And apart from the QtEx,
which outperforms the greedy approach by roughly $400, every
other solution’s gain has a similar and monotonic growth with
respect to the available local resources. On the other hand, in
Deployment B, the gain achieved by our DQN approach grows
much faster with the dimension of the federated domain than all
other approaches, e.g., reaching an 80% revenue increase with
6x resources than [35]’s. This is because the DQN federates
more services than the greedy and Q-table solutions (see Fig. 8),
and growth in the federation pool allows it to accommodate
more services than the other solutions. Additionally, DQN takes
advantage of the federation cost fluctuations to federate even
more services when the federation cost is low, thus, increasing
the benefits.
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F. Marginal Profit

Finally, we perform a sensitivity analysis on the marginal
profit associated with the price of the services, P in eq. (2).
Intuitively, P has an impact on reward via two phenomena:
(i) higher P increases the net revenue associated with each
incoming service, but (ii) higher P reduces incentives for
customers to make requests into the system.

To this end, we deploy our baseline scenario (Table III),
and test all our algorithms during the same 3-month period we
used before for a variety of marginal profits between 0 (the
service price equals that of the local deployment cost) and 3
(the service price is 4 times that of the local deployment cost).
The results are depicted in Fig. 13.

It is worth noting that, when P ≥ 1, the greedy approach
outperforms both Q-table based solutions. This is due to the
fact that we get a lower rate of service requests as we increase
P (see Fig. 4), which allows the πg policy to accommodate
all incoming services locally. Conversely, the DQN algorithm
reaches its maximum cumulative reward with P = 0.8, yielding
a drastic drop in reward with P > 0.8. This is due to the fact
that we have a drop in service requests of type c5d.4xlarge
(see Fig. 4c for P ≥ 1). With P > 1, DQN obtains a profit
mostly from c5.2xlarge and t3a.small services, and reaches



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0  0.5  1  1.5  2  2.5  3

C
u
m

u
la

ti
v
e
 r

e
w

a
rd

fr
o
m

 0
3

/0
5

 t
o
 3

1
/0

7
 [

$
]

P

DQN �=0.9
Qt �=0.9

QtEx �=0.1
greedy

drop of c5d.4xlarge arrivals

Fig. 13: Impact of the marginal benefit P in the commutative reward
achieved by each solution.

its peak at P = 1.8. From that point on, all service requests
decay prominently and so does the cumulative reward.

G. Practical considerations

In the following, we discuss some practical considerations
on the realization of the DQN agent in a real cloud service
provider:

1) A real service provider should revisit the revenue function
r(t) proposed in §III, and substitute it according to its
business model. Consequently, the environment used to
train the DQN (see Fig. 5) should be refactored to yield
the new instantaneous reward r(t) set by the real service
provider.

2) The service provider should also revisit the assumption 1
on the services arrival rate f

(
p(t)
)
, and how we defined it

in this paper (4). In particular, the service provider could
use real traces of service arrivals, and use such traces
in the training stage of the DQN. If the Assumption 1
of [36] is right, the arrival of services should follow a
concave decrease as the service provider increases the
prices p(t)(σ).

3) The service provider should refer to the resources it has
on the local infrastructure, i.e.: Cl, Ml, and Hl. It should
also refer to the amount of resources in the federation
domain, i.e.: Cf , Mf , and Hf . Note that in this paper
we used the information reported by a large Spanish
provider [35]; thus, we believe the aggregated resources
used in our work are close to realistic scenarios.

4) The service provider should follow the training procedure
explained in §VII-B using up-to-date data traces to capture
real price dynamics (as we do with the prices of a major
Europe/US cloud provider – see Fig. 2). Then, following
our own workflow, an empirical evaluation of parameter
γ should be performed, which may differ to ours if the
provider has changed r(t) .

Note that the timescale of our DQN approach is rather fast5.

5As shown in Fig. 10, DQN took 3 minutes and 43 seconds to take
the deployment decision of 2918 service arrivals during 03/05/2020 and
31/07/2020.

However, faster decisions may be obtained if required by using
specialized machine learning hardware such as GPUs or TPUs,
which are nowadays quite standard for this type of solutions.

VIII. CONCLUSIONS

Recent research activities have already proposed archi-
tectures to achieve service federation. However, they lack
analyzing the service cost dynamic-effects upon making
federation decisions. The contribution of this research is to
fill such a gap by proposing a DQN agent, that solves the
deployment decision problem of whether to federate services
upon dynamic price changes in federation. Experiments were
conducted taking as reference a real dataset of cloud provider
prices, and service arrivals that decreased with the rise of prices.
Simulations show that the proposed DQN agent reached 90%
of the optimal revenue in a time-lapse of 3 months, and it
learned the federation pricing dynamics, e.g., to stop federation
upon incoming pricing peaks. Additionally, the DQN agent
achieved fewer rejections than all the analyzed solutions, is
able to achieve higher rewards upon the growth of available
resources; and its computation time is in the same order of
magnitude as other solutions.

The future work aims to explore scenarios consisting of (i)
multiple federated domains; and (ii) service providers – each
of them offering its own pricing. In that way, we can achieve
maximum revenue by either (i) selecting the best federated
domain; or (ii) offering more competitive prices to prevent
users from selecting other service providers, thus, increasing
the incoming service requests. Additionally, future work will
also consider the fulfillment of location and latency constraints.
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