
Cellular Access Multi-Tenancy through
Small-Cell Virtualization and Common RF Front-End Sharing

Jose Mendes
NEC Laboratories Europe
Heidelberg, Germany
jose.mendes@neclab.eu

XianJun Jiao
Ghent University - imec, IDLab,
Department of Information

Technology
Ghent, Belgium

Xianjun.jiao@ugent.be

Andres Garcia-Saavedra
NEC Laboratories Europe
Heidelberg, Germany

andres.garcia.saavedra@neclab.eu

Felipe Huici
NEC Laboratories Europe
Heidelberg, Germany
felipe.huici@neclab.eu

Ingrid Moerman
Ghent University - imec, IDLab,
Department of Information

Technology
Ghent, Belgium

Ingrid.Moerman@UGent.be

ABSTRACT
Mobile traffic demand is expected to grow as much as eight-fold
in the coming next five years, putting strain in current wireless
infrastructure. One of the most common means for matching these
mounting requirements is through network densification, essen-
tially increasing the density of deployment of operators’ base sta-
tions. In this paper we take a step in that direction by implementing
a virtualized base station consisting of multiple, isolated LTE PHY
stacks running concurrently on top of a hypervisor deployed on
a cheap, off-the-shelf x86 server and a shared radio head. In par-
ticular, we show that it is possible to run multiple virtualized base
stations while achieving throughput equal or close to the theoretical
maximum.

CCS CONCEPTS
• Networks → Wireless access points, base stations and in-
frastructure;Network experimentation;Networkmeasurement;
• Hardware → Signal processing systems; Wireless devices;

KEYWORDS
Small-cell virtualization; fronthaul sharing; radio multi-tenancy

ACM Reference Format:
Jose Mendes, XianJun Jiao, Andres Garcia-Saavedra, Felipe Huici, and Ingrid
Moerman. 2017. Cellular Access Multi-Tenancy through Small-Cell Virtual-
ization and Common RF Front-End Sharing. In Proceedings of WiNTECH’17,
Snowbird, UT,USA, October 20, 2017, 8 pages.
https://doi.org/10.1145/3131473.3131474

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiNTECH’17, October 20, 2017, Snowbird, UT,USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5147-8/17/10. . . $15.00
https://doi.org/10.1145/3131473.3131474

1 INTRODUCTION
In the coming years, growth in mobile data traffic, fueled by the
continued adoption of mobile devices and their use for downloading
video and other content, will continue to expand at a rapid pace,
with reports claiming as much as an eight-fold increase over the
course of the next five years [7]. In that same time period, 70% of the
world’s population is forecast to use mobile devices. Along these
lines, 5G networks are supposed to cope with 1000 times higher data
volume per geographical area, 10-100 times more connected devices
and 10-100 times higher typical user data rate, among others [22].

Such towering numbers will put significant strain on existing
mobile infrastructure. Network densification [5] is a well-recognized
means to increase spectrum efficiency in cellular systems, and thus
data traffic capacity. The obvious way of densifying Radio Access
Networks (RANs) is to deploymore radio access points per unit area.
However, deploying such infrastructure represents a significant cost
for network operators, rendering this approach less than attractive
in practice. It is reported, for instance, that today 50% of radio sites
yield less than 10% of operators’ revenue [14].

In order to achieve a good degree of densification without com-
promising cost efficiency, infrastructure sharing has become a piv-
otal strategy guiding the design of next generation mobile networks.
It is estimated that network sharing can make up for 20% of opera-
tional costs in typical European operators, halving the infrastruc-
ture cost of passive RAN components (which make up to 50% of
the total network cost) [12].

However, efficiently and safely sharing such radio access points
remains challenging. In this paper, we argue that the combination
of applying virtualization technologies (e.g., Xen, KVM [2, 13])
to base station software, along with the use of inexpensive radio
front-ends (also called radio head) is a key enabler of network den-
sification. Virtualization provides the strong isolation needed to
safely run multiple (virtualized) base stations belonging to differ-
ent operators on shared hardware, thus increasing the density of
each of those operators’ networks and improving the efficiency of
the deployed hardware through statistical multiplexing. Regarding
radio front-ends, LTE modems based on Software Defined Radio

Session: Building Better SDR Platforms WiNTECH17, October 20, 2017, Snowbird, UT, USA.

35

https://doi.org/10.1145/3131473.3131474
https://doi.org/10.1145/3131473.3131474
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3131473.3131474&domain=pdf&date_stamp=2017-10-20

WiNTECH’17, October 20, 2017, Snowbird, UT,USA J. Mendes et al.

Figure 1: Virtualized base station overall architecture.

(SDR) [10, 16] are gaining momentum as a solution to future dense
deployments [20]; a remarkable example is Facebook’s OpenCellu-
lar project [8].

Towards this vision of network densification and infrastructure
sharing, we provide a prototypical implementation of a high perfor-
mance virtualized platform consisting of an off-the-shelf, inexpen-
sive x86 server running the PHY layer of multiple virtualized LTE
base stations (called eNodeBs or eNBs for short) instances along
with a common, shared radio head (called SRH hereafter). We focus
on the PHY layer since this has been shown to be far the most
computationally expensive part of an eNB, sometimes consuming
up to 2/3 of the available CPU cyles [4, 19, 25]. In greater detail, in
this paper we show that:

• Standard x86 hardware is capable of handling the LTE PHY
stacks of multiple (independent) eNBs, properly multiplexing
their access to a common radio front-end;
• Inexpensive SDR equipment can satisfy the bandwidth re-
quirements needed by mobile device applications, including
content delivery.
• The use of full-fledged virtualization (i.e., as opposed to
containers) does not degrade performance.

To the best of our knowledge, this is the first work presenting
promising results of multiple, virtualized LTE PHY layer stacks shar-
ing commodity SDR equipment. In particular, our results show that
a virtualized eNB can yield throughput at the theoretical maximum
rate in some setups, and that up to 4 virtualized eNBs can concur-
rently run on an inexpensive 4-core x86 server without maxing out
its CPU resources.

2 DESIGN AND IMPLEMENTATION
The overall architecture of our virtual eNB environment is depicted
in Figure 1. Our system consists of three modules: eNB, mux, and
radio front-end.

The first module, represented in the left-most part of Figure 1,
consists of a set of virtual eNBs (VeNBs). Each VeNB, in turn, com-
prises the LTE eNB software itself, a virtualization environment,
and a guest operating system running on commodity x86 servers.
Regarding software, we use srsLTE [10], a highly modular open-
source LTE library which is relatively simple to modify and use. In
addition, we choose KVM as our virtualization platform and use
Linux guests to house the virtualized base station software.

In the right-most part of the figure, we represent the actual radio
front-ends or shared radio heads (SRH). To this aim, we employ
an USRP B210, commonly use for software defined radio [10]. This
board provices 56 MHz of real-time bandwidth, a programmable
Spartan6 FPGA, and fast SuperSpeed USB 3.0 for connectivity with
the eNB software. For tests purposes, we employ a set of addi-
tional USRP boards and servers deploying the LTE UE software
counterpart that allow us to connect to each of the virtual eNBs.

In between, we implement and deploy a mechanism to multiplex
signals from the multiple virtual base stations onto the shared radio
head (SRH) for transmission (Tx) as well as the ability to split the
incoming signal back to the corresponding eNBs, i.e. reception (Rx).
To this end, we implement a frequency multiplexing IQ switch that
receives IQ samples (digitized radio signals) from the VeNBs and
shifts those to different frequency locations in a wider bandwidth.
The merged signal, which has higher sampling rate and wider
bandwidth than those of the individual VeNBs, is sent to the SRH.
To avoid overlapping or interference between the VeNBs, we use a

Session: Building Better SDR Platforms WiNTECH17, October 20, 2017, Snowbird, UT, USA.

36

Cellular Access Multi-Tenancy through
Small-Cell Virtualization and Common RF Front-End Sharing WiNTECH’17, October 20, 2017, Snowbird, UT,USA

Figure 2: Experimental setup to validate our IQ switch design.

DUC (Digital Up Converter) composed of an upsampling filter and
a frequency shifting module.

In order to comply with the Nyquist theorem and achieve ef-
ficient computation, we set the sampling rate of the final signal
as follows. First, we calculate the least common multiplier from
the baseband sampling rate of the different VeNBs (e.g., 30 if three
VeNBs have sampling rate 3 MHz, 5 MHz and 10 MHz). Then, we
take increasing multiples of this multiplier until the result is higher
than the sum of the VeNBs’ sampling rate (in the example, the total
is 3+ 5+ 10 = 18, so we would set the final signal’s sampling rate to
30 MHz). Finally, it is worth pointing out that the IQ switch/demux
is implemented using GNU Radio [9] (see Figure 2).

In summary, the workflow is as follows. Each VeNB runs srsLTE
in a Linux VM and output the IQ samples over a TCP socket. From
there, the samples arrive at the GNU radio IQ switch where their
TCP/IP headers are stripped in the TCP Source block. After that,
upsampling and frequency shifting are done in the Interpolating FIR
(Finite Impulse Response) Filter and Rotator blocks, respectively,
and the signals from all the VeNBs are merged in the Sum block.
Next, the signals are sent to the SRH via the USRP Sink block
which communicates with the UHD driver and, eventually, with
the SRH (a USRP B210 radio in our case) over USB3. Note that due
to space constraints we do not show a diagram for the demux (i.e.,
for receiving IQ samples from the SRH going to the eNBs).

3 VALIDATION AND EVALUATION
In this section we first validate the design approach taken in the de-
sign of our IQ switch, and then we provide a thorough performance
evaluation of our virtualized multi-VeNB platform.

3.1 IQ Switch Validation
Our first set of experiments is aimed at validating our IQ switch
implementation. The experimental setup, illustrated in Figure 2,
consists of two sources of IQ samples emulating two VeNBs using
a common USRP radio front-end. Each VeNB is configured with
5MHz of channel width. The parameter of our FIR is decided accord-
ing to the specific properties of the LTE signals to handle. In case
of 5 MHz VeNBs, each IQ flow is comprised of 300 subcarriers with

Figure 3: Frequency response of our FIR design.

subcarrier spacing 15 kHz. That means that the effective bandwidth
occupied by these subcarriers is 4.5 MHz. In other words, LTE al-
ready provides a guard band which allows us to use a more relaxed
FIR design. Based on this information, we design a FIR with cutoff
frequency equal to 5 MHz and transition width equal to 1 MHz.
This causes about 50 dB attenuation between adjacent 4.5 MHz
effective LTE bandwidth by using 55 coefficients. The frequency
response of the FIR is shown in Figure 3.

In turn, the actual spectrum of our two 5MHzVeNBs before being
sent to the USRP radio front-end is shown in Figure 4. According
to the figure, the interference level to adjacent channel is about
60 dB lower than the signal in that channel. This is a very good
isolation at the transmitter side, since it causes negligible signal
to interference and noise ratio (SINR) degradation. Note that we
validate this in our next experiments, where RF hardware non-ideal
effects are also involved.

Session: Building Better SDR Platforms WiNTECH17, October 20, 2017, Snowbird, UT, USA.

37

WiNTECH’17, October 20, 2017, Snowbird, UT,USA J. Mendes et al.

Table 1: SNR threshold to achieve 1% BLER.

LTE MCS index 0 5 10 15 20 25 28
Without adjacent channel interference 4.4 dB 8 dB 9 dB 13.5 dB 17 dB 22 dB 28.6 dB
With adjacent channel interference 8 dB 10 dB 11.3 dB 13.5 dB 17.8 dB 24.7 dB 29.5 dB

Figure 4: Performance of two IQ generators multiplexed by
our IQ switch design.

Finally, we validate the performance of our IQ switch for dif-
ferent LTE modulation and coding schemes (MCSs). Specifically,
Table 1 reports experimental data taken in our validation setup
that shows the SNR threshold required to achieve 1% Block Error
Rate (BLER)—a threshold that indicates a noticeable performance
drop. We perform the same experiment for two cases: (i) with a
single TX chain, i.e. no adjacent channel interference (only additive
white Gaussian noise), and (ii) both TX chains, i.e. with AWGN
noise and adjacent channel interference. The results show that the
additional interference caused by the secondary LTE channel is
minimal, validating in this way the design approach taken.

3.2 End-to-end Performance Evaluation
In the sequel, we are interested in (i) assessing whether current,
off-the-shelf x86 hardware is able to concurrently host multiple
(software-based) base stationswith high throughput, and (ii) whether
virtualization, which is a requirement to keep isolation among
VeNBs, results in significant overhead. We carry out all our experi-
ments on a pair of servers with an Intel Xeon E5-1620 v2 3.7 GHz
CPU (4 cores) and 16GB of RAM (Linux 4.4.1, QEMU 2.1.2) con-
nected over USB3 to a USRP B210 acting as a shared radio head

x86 server
(veNB)

USRP B210
(SRH)

USB3

virtualized base station

USRP B210
USB3 x86 server

UE (user equipment)

Figure 5: Experimental setup showing the virtualized base
station and UE (user equipment) each consisting of an x86
server connected to a USRP B210 via a USB3 interface.

(see Figure 5). To guarantee more deterministic results, we disable
hyper-threading, turbo boost, and all power saving features. Fur-
ther, we limit the amount of cores that an eNB can use to one. That
is, for baremetal (no virtualization), we pin the eNB process to a
single core and, for each VeNB, we pin the entire QEMU process to
a core, including the main QEMU thread, the QEMU I/O threads
and the VM’s vCPU thread. In terms of wireless channel bandwidth
for the eNBs, we consider 5 and 10 MHz, a common configuration
in femto and small-cell deployments [18], and use the unlicensed
2.4 GHz band as frequency carrier. In addition, we ensure that our
experiments are properly isolated from external interfering trans-
mitters using the same band, e.g. WiFi networks. Finally, we use
iperf to generate UDP traffic.

3.2.1 Single eNB/VeNB Throughput. We begin the evaluation
by measuring Tx/downlink throughput (i.e., from the base station
to the UE) when running a single eNB, labelled as baremetal or
“BM”), and then assess the overhead from virtualization when using
a single VeNB. In both cases, we use a wide range of Modulation
and Coding Schemes (MCSs), and carry out experiments for the
5 MHz and 10 MHz bands as previously mentioned. In addition,
we downclock the CPU’s frequency to determine at which value
the base station can no longer match the theoretical maximum
throughput.

The results are plotted in Figure 6 (for convenience, we plot a
line depicting the theoretical maximum throughput, that is, the
transport block size (TBS), for each MCS). In the 5 MHz case (Fig-
ure 6), all setups, both virtualized (VeNB) and non-virtualized, i.e.
baremetal (BM), are able to yield the theoretical maximum through-
put for all MCSs (up to a maximum of 18 Mb/s) even when the CPU
frequency is scaled down. The only exception is for the VeNB when
runnion on a CPU at 1.2 GHz, which experiences a slight drop for
MCSs higher than 22.

The 10 MHz case, shown in Figure 6, shows that most setups
can still reach the theoretical max of up to 37 Mb/s, except in the
case where the CPU is running at 1.2 GHz for both the eNB and
the VeNB, and at 2 GH for the VeNB.

Finally, a remarkable observation is the fact that virtualization
(VeNB) does not have a noticeable overhead over its baremetal
counterpart in both cases (5 and 10 MHz).

3.2.2 Single eNB/VeNB CPU Utilization. Next, we use the top
tool to evaluate CPU utilization when running a single eNB and a
single VeNB. Figure 7a shows the CPU usage of both baremetal and
VeNB cases, operating at 5 MHz over different CPU frequencies.
Importantly, this result justifies the fact that a CPU frequency of
1.2 GHz could not reach the maximum theoretical throughput in
the previous experiment: the CPU is maxed out.1

1Note that the whole QEMU process (QEMU threads plus vCPU thread) is pinned to a
single core; this explains that the vCPU never gets 100% of the core share, as opposed
to baremental.

Session: Building Better SDR Platforms WiNTECH17, October 20, 2017, Snowbird, UT, USA.

38

Cellular Access Multi-Tenancy through
Small-Cell Virtualization and Common RF Front-End Sharing WiNTECH’17, October 20, 2017, Snowbird, UT,USA

(a) 5 MHz bandwidth (b) 10 MHzbandwidth

Figure 6: Throughput for a single baremetal eNB and for a single virtualized eNB for the 5 MHz and 10 MHzbands, different
CPU frequencies and different MCSs.

(a) 5 MHz bandwidth (b) 10 MHz bandwidth

Figure 7: CPU utilization when running a single eNB and a single VeNB on the 5 MHz and 10 MHz bands for different CPU
frequencies and MCSs.

With 10 MHz bandwidth (Figure 7b), the experimental results
provide the same explanation for the throughput drop shown in
Figure 6: a CPU frequency of 1.2 GHz is overly low for the eNB (and
subsequently for VeNBs too) to achieve the theoretical maximum
since the CPU is fully utilized (as is the case in the VeNB at 2GHz
and higher MCS values). Still, for common CPU frequencies, we
are more than able to host a single VeNB instance. In Section 3.2.4,
we evaluate multiple concurrent VeNBs. Prior to this, we show
next an evaluation of the decoding process, typically a more costly
procedure.

In the following, we assess the CPU consumption of independent
components within the eNB software (srsLTE). Our results are sum-
marized in Figure 8 for different MCSs. In the figures, we represent
with bars the most representative consumers (functions) of CPU

and aggregate the remaining in a meta function labeled as “others”.
In particular, it is worth highlighting how bit interleaving gains
weight as the modulation level grows, consuming up to 60% of the
overall CPU usage with the largest MCS compared to a (roughly)
12% consumption with MCS equal to 1.

3.2.3 PHY Receiving. So far we have focused on the eNB down-
link scenario (i.e., signal transmission). However, since receiving is
one of the most computationally expensive operations of an LTE
stack of an eNB (i.e. uplink), we also need to prove that it is feasible
for our commodity server to perform this operation, both for the
baremetal eNB and the VeNB.

Evaluating the PHY receiving cost by setting up UE to eNB link
is non-trivial since it implies the use of L2 and above protocols

Session: Building Better SDR Platforms WiNTECH17, October 20, 2017, Snowbird, UT, USA.

39

WiNTECH’17, October 20, 2017, Snowbird, UT,USA J. Mendes et al.

(a) MCS 1

(b) MCS 15

(c) MCS 28

Figure 8: CPU profiling of individual components of srsLTE
when using 5 MHz.

(MAC, PDCP, etc.) and requires the eNB to provide UL grants to the
UE on a separate channel (also a non-trivial process which requires
scheduling decisions). This effectively means that we would not
only be measuring the PHY receiving capabilities of the eNB but
also other signaling and protocol overhead.

Since our goal in this section is simply to evaluate the computa-
tional expense of PHY receiving, we resort to evaluating the PHY
receiving capabilities of the UE. This procedure is on the same
order of complexity than the process of eNB receiving—in fact, it
is roughly the same process with the exception of one less FFT
computation—thus allowing to assess the viability of eNB receiving
LTE signal on software. Figure 9 depicts our experimental evalu-
ation on both 5 MHz and 10 MHz channels. The case of 5 MHz is
similar to the transmission experiment performed earlier with CPU
starvation issues when the CPU runs at 1.2 GHz.

In the 10 MHz case, the graph shows that we can correctly pro-
cess signals at 10 MHz for all CPU frequencies and MCSs when
using baremetal (eNB). The exception is at 1.2 GHz, which shows
a spike when the MCS index is 15: at this point the CPU is out of
cycles; subsequently any higher MCS shows lower CPU utilization
because the system drops samples and thus it does not consume
cycles for decoding. In the virtualized case, we see a substantial
difference in CPU consumption with respect to baremetal simply
because, as stated before, the QEMU threads are scheduled on the
same core. That is, under load, the vCPU utilization will not reach
100% of the core usage because the remaining threads also need
to be executed on the same core (and under load also require CPU
time to execute their tasks). Aside from that phenomenon, the be-
haviour is similar to baremetal decoding: there is a spike in usage
from which CPU utilization drops because samples are dropped
and not decoded. As opposed to baremetal, the values shows that
virtualized PHY receiving is only viable at 3.7 GHz.

3.2.4 Multiple VeNBs. Finally, we measure the CPU utilization
and network throughput performance for the whole system: includ-
ing the IQ switch and concurrent virtualized base stations (vENBs)
at both 5 and 10 MHz channel widths. We evaluate up to 4 con-
current veNBs, to match the 4 CPU cores we have in our testbed.
The represented IQ switch values correspond to a baseline compu-
tational effort to merge N signals at a given sampling rate and is
evaluated independently of the concurrent VeNBs.

The results in Figure 10 evidence the feasibility of running mul-
tiple eNBs on the same physical infrastructure. Note that, on our 4-
core machine we can run up to 4×5 MHz eNBs as well as 2×10 MHz
without exhausting our CPU resources. In all, this shows the fea-
sibility of running multiple, virtualized base stations over shared,
inexpensive commodity hardware.

We now evaluate the memory requirements of the VeNB soft-
ware in comparison to its guest OS (Debian) for different number
of VeNBs. The experiment consists of a downlink scenario with
1 to 3 VeNBs with different MCSs and bandwidth configuration.
A first conclusion raised out of our experiment is that memory
consumption is practically independent of the MCS and bandwidth
configuration. Due to this, we represent in Figure 11 the mem-
ory utilization of a scenario with 5 MHz and MCS equal to 28. It
is shown that memory usage grows linearly with the number of
virtualized eNBs. This is explained by the fact that each srsLTE
instance is independent (running on its own VM) and therefore, no
libraries are shared between instances. In addition, the behavior
of the Linux dynamic loader is to load all required libraries (e.g.
VOLK, libboost) making the amount of memory required by srsLTE
external libraries independent on the MCS/bandwidth.

Session: Building Better SDR Platforms WiNTECH17, October 20, 2017, Snowbird, UT, USA.

40

Cellular Access Multi-Tenancy through
Small-Cell Virtualization and Common RF Front-End Sharing WiNTECH’17, October 20, 2017, Snowbird, UT,USA

(a) 5 MHz bandwidth (b) 10 MHz bandwidth

Figure 9: CPU utilization for the PHY receiving process using a 10 MHz bandwidth with different MCSs and CPU frequencies.

Figure 10: (multi-)CPU utilization for multiple VeNBs run-
ning concurrently and different IQ switch configurations.

4 RELATEDWORK
Virtualization of resources in radio access networks is not new, al-
though most of the work focuses on spectrum efficiency. FlexRadio,
for instance, focuses on enabling sharing of RF resources through
efficient allocation by unifying MIMO, full-duplex and interference
alignment techniques [6]. SplitAP [3] “virtualizes” the network by
providing air-time guarantees toto clients sharing an access point.

Closer to the topic of this paper, a recent survey [15]mentions the
possibility of using a hypervisor to virtualize an LTE base station.
The work in [24] also suggests using hypervisors to virtualize eNBs,
but focuses instead on algorithms to schedule the air interface [24].
Perhaps the closest work to ours is Virtual Wifi [23], which, as
the name suggests, uses KVM to virtualize a WiFi access point
as opposed to an LTE base station. The work also only uses a
single VM/virtualized access point and reports much higher delay
overheads from virtualization (up to 35% more).

0

100

200

300

1 2 3

Number of VMs

M
e

m
o

ry
 (

M
B

)

(minimal) Debian srsLTE

Figure 11: Memory consumption of multiple VeNBs.

A number of research papers have looked into running wire-
less processing on different kinds of inexpensive hardware. For
example, Atomix [1] introduces a modular framework for building
applications on wireless infrastructure with high performance by
leveraging multi-processor DSPs. Further, Sora [21] provides a high
performance software radio using a custom radio control board
and implements an 802.11a/b/g WiFi transceiver. Ziria [11] extends
this work by presenting a novel programming model that makes it
easier to program the Sora platform [11]

Finally, there are a number of modular, software frameworks for
running wireless applications on commodity x86 hardware. Perhaps
the most widely used one is GNU Radio, which can be used with
external hardware to create software-defined radios or without it as
simulation [9]. A number of other platforms target LTE, including
OpenAirInterface [16], OpenLTE [17] and srsLTE [10]. In this work
we settled on the latter since OpenLTE is incomplete and many

Session: Building Better SDR Platforms WiNTECH17, October 20, 2017, Snowbird, UT, USA.

41

WiNTECH’17, October 20, 2017, Snowbird, UT,USA J. Mendes et al.

features are still under development and OpenAirInterface’s code
is complex and hard to split each LTE layer processing for rapid,
early evaluation and prototyping. We further used GNU radio to
implement our mux/demux.

5 CONCLUSION AND FUTUREWORK
In this work we introduced a working proof-of-concept system
able to run concurrently multiple, virtualized LTE PHY stacks over
shared, inexpensive commodity hardware with network throughput
performance equal or close to the theoretical maximum. We have
also shown that it is possible to use an IQ switch software module
and a single shared radio head to multiplex the signals from the
base stations. To the best of our knowledge there is not a large body
of work on end-to-end base station virtualization sharing common
infrastructure (including the radio front-end).

There are important points to work out as next steps. One impor-
tant drawback is the fact that our testbed is not comprised yet of a
fully functional virtualized LTE base station. As we explained in our
paper, we evaluate a PHY-only eNB instead which is the most com-
putationally expensive part, and its performance evaluation shows
that the CPU is able to cope with multiple concurrent base stations.
In addition, we do not yet know where the major performance
bottlenecks in our system are, nor have we compared our system to
other base station software such as OpenAirInterface. Note, more-
over, that if the price, power consumption or physical size of our
solution were too large, operators might be reluctant to deploy it.
In future work we are looking at the possibility of instantiating
virtual base station instances on the fly, when needed, in order to
bring down power usage. We are also looking at using single-board
computers (e.g., an Intel NUC) instead of the physically-large x86
server we used in this work. Regarding the IQ switch software
module, as an improvement to frequency multiplexing, we would
need to investigate time multiplexing and statistical multiplexing
approaches in the context of LTE protocols to improve spectrum
efficiency.

ACKNOWLEDGMENTS
The projects leading to this paper has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation programme
under grant agreement No. 67156 (Flex5Gware) and No. 732174
(ORCA project).

REFERENCES
[1] Manu Bansal, Aaron Schulman, and Sachin Katti. 2015. Atomix: A Framework

for Deploying Signal Processing Applications on Wireless Infrastructure. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).
USENIXAssociation, Oakland, CA, 173–188. https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/bansal

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the Art of
Virtualization. SIGOPS Oper. Syst. Rev. 37, 5 (Oct. 2003), 164–177. https://doi.org/
10.1145/1165389.945462

[3] Gautam Bhanage, Dipti Vete, and Ivan Seskar. 2010. SplitAP: Leveraging Wireless
Network Virtualization for Flexible Sharing of WLANs. In Global Telecommuni-
cations Conference. IEEE. https://doi.org/10.1109/GLOCOM.2010.5684328

[4] Sourjya Bhaumik, Shoban Preeth Chandrabose, Manjunath Kashyap Jataprolu,
GautamKumar, AnandMuralidhar, Paul Polakos, Vikram Srinivasan, and Thomas
Woo. 2012. CloudIQ: A Framework for Processing Base Stations in a Data Center.
In Proceedings of the 18th Annual International Conference on Mobile Computing
and Networking (Mobicom ’12). ACM, New York, NY, USA, 125–136. https://doi.
org/10.1145/2348543.2348561

[5] Naga Bhushan, Junyi Li, and Durga Malladi. 2014. Network densification: the
dominant theme for wireless evolution into 5G. In IEEE Communications Maga-
zine. IEEE. https://doi.org/10.1109/MCOM.2014.6736747

[6] Bo Chen, Vivek Yenamandra, and Kannan Srinivasan. 2015. FlexRadio: Fully
Flexible Radios and Networks. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15). USENIX Association, Oakland, CA, 205–
218. https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/
chen

[7] Cisco. [n. d.]. 10th Annual Cisco Visual Networking Index (VNI) Mobile Forecast
Projects 70 Percent of Global Population Will Be Mobile Users. https://newsroom.
cisco.com/press-release-content?type=webcontent&articleId=1741352. ([n. d.]).

[8] Facebook. [n. d.]. Introducing OpenCellular: An open source wire-
less access platform. https://code.facebook.com/posts/1754757044806180/
introducing-opencellular-an-open-source-wireless-access-platform. ([n. d.]).

[9] GNURadio. [n. d.]. GNURadio, the Free and Open Software Radio Ecosystem.
http://gnuradio.org/. ([n. d.]).

[10] Ismael Gomez-Miguelez, Andres Garcia-Saavedra, Paul D. Sutton, Pablo Ser-
rano, Cristina Cano, and Doug J. Leith. 2016. srsLTE: An Open-source Plat-
form for LTE Evolution and Experimentation. In Proceedings of the Tenth ACM
International Workshop on Wireless Network Testbeds, Experimental Evalua-
tion, and Characterization (WiNTECH ’16). ACM, New York, NY, USA, 25–32.
https://doi.org/10.1145/2980159.2980163

[11] Mahanth Gowda, Gordon Stewart, Geoffrey Mainland, Bozidar Radunović, Dim-
itrios Vytiniotis, and Doug Patterson. 2014. Poster: Ziria: Language for Rapid
Prototyping of Wireless PHY. In Proceedings of the 20th Annual International
Conference on Mobile Computing and Networking (MobiCom ’14). ACM, New York,
NY, USA, 359–362. https://doi.org/10.1145/2639108.2642893

[12] GSMA report. 2012. Mobile Infrastructure Sharing. Technical Re-
port. http://www.gsma.com/publicpolicy/wp-content/uploads/2012/09/
Mobile-Infrastructure-sharing.pdf

[13] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. KVM:
the Linux Virtual Machine Monitor. In In Proc. 2007 Ottawa Linux Symposium
(OLS ’07).

[14] K. Larsen. 2014. Network Sharing Fundamentals. https://techneconomyblog.com/
2014/05/21/the-abc-of-network-sharingthe-fundamentals-part-i/. (May 2014).
[Online; accessed 2017-02-27].

[15] Chengchao Liang and F. Richard Yu. 2015. Wireless Network Virtualization: A
Survey, Some Research Issues and Challenges. In IEEE Communications Surveys
and Tutorials. IEEE. https://doi.org/doi:10.1109/comst.2014.2352118

[16] Navid Nikaein, Mahesh K. Marina, Saravana Manickam, Alex Dawson, Raymond
Knopp, and Chri stian Bonnet. 2014. OpenAirInterface: A Flexible Platform
for 5G Research. SIGCOMM Comput. Commun. Rev. 44, 5 (Oct. 2014), 33–38.
https://doi.org/10.1145/2677046.2677053

[17] OpenLTE. [n. d.]. OpenLTE: An open source 3GPP LTE implementation. https:
//sourceforge.net/p/openlte/wiki/Home/. ([n. d.]).

[18] Jonathan Rodriguez. 2015. Fundamentals of 5G mobile networks. John Wiley &
Sons.

[19] Peter Rost, Salvatore Talarico, and Matthew C. Valenti. 2015. The Complexi-
tyâĂŞRate Tradeoff of Centralized Radio Access Networks. In IEEE Transactions
on Wireless Communications. IEEE. https://doi.org/10.1109/TWC.2015.2449321

[20] S. Sun, M. Kadoch, L. Gong, and B. Rong. 2015. Integrating network function
virtualization with SDR and SDN for 4G/5G networks. IEEE Network 29, 3 (May
2015), 54–59. https://doi.org/10.1109/MNET.2015.7113226

[21] Kun Tan, He Liu, Jiansong Zhang, Yongguang Zhang, Ji Fang, and Geoffrey M.
Voelker. 2011. Sora: High-performance Software Radio Using General-purpose
Multi-core Processors. Commun. ACM 54, 1 (Jan. 2011), 99–107. https://doi.org/
10.1145/1866739.1866760

[22] The 5G Infrastructure Public Private Partnership. [n. d.]. KPIs. https://5g-ppp.
eu/kpis. ([n. d.]).

[23] Lei Xia, Sanjay Kumar, Xue Yang, Praveen Gopalakrishnan, York Liu, Sebastian
Schoenberg, and Xingang Guo. 2011. Virtual WiFi: Bring Virtualization from
Wired to Wireless. In Proceedings of the 7th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE ’11). ACM, New York, NY,
USA, 181–192. https://doi.org/10.1145/1952682.1952706

[24] Carmelita Goerg Yasir Zaki, Liang Zhao and Andreas Timm-Giel. 2010. LTE
Wireless Virtualization and Spectrum Management. In IFIP WMNC.

[25] Chun Yeow Yeoh, Mohammad Harris Mokhtar, and Abdul Aziz Abdul Rahman.
2016. Performance study of LTE experimental testbed using OpenAirInterface. In
International Conference on Advanced Communication Technology (ICACT). IEEE.
https://doi.org/10.1109/ICACT.2016.7423494

Session: Building Better SDR Platforms WiNTECH17, October 20, 2017, Snowbird, UT, USA.

42

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/bansal
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/bansal
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1109/GLOCOM.2010.5684328
https://doi.org/10.1145/2348543.2348561
https://doi.org/10.1145/2348543.2348561
https://doi.org/10.1109/MCOM.2014.6736747
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/chen
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/chen
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1741352
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1741352
https://code.facebook.com/posts/1754757044806180/introducing-opencellular-an-open-source-wireless-access-platform
https://code.facebook.com/posts/1754757044806180/introducing-opencellular-an-open-source-wireless-access-platform
http://gnuradio.org/
https://doi.org/10.1145/2980159.2980163
https://doi.org/10.1145/2639108.2642893
http://www.gsma.com/publicpolicy/wp-content/uploads/2012/09/Mobile-Infrastructure-sharing.pdf
http://www.gsma.com/publicpolicy/wp-content/uploads/2012/09/Mobile-Infrastructure-sharing.pdf
https://techneconomyblog.com/2014/05/21/the-abc-of-network-sharingthe-fundamentals-part-i/
https://techneconomyblog.com/2014/05/21/the-abc-of-network-sharingthe-fundamentals-part-i/
https://doi.org/doi:10.1109/comst.2014.2352118
https://doi.org/10.1145/2677046.2677053
https://sourceforge.net/p/openlte/wiki/Home/
https://sourceforge.net/p/openlte/wiki/Home/
https://doi.org/10.1109/TWC.2015.2449321
https://doi.org/10.1109/MNET.2015.7113226
https://doi.org/10.1145/1866739.1866760
https://doi.org/10.1145/1866739.1866760
https://5g-ppp.eu/kpis
https://5g-ppp.eu/kpis
https://doi.org/10.1145/1952682.1952706
https://doi.org/10.1109/ICACT.2016.7423494

	Abstract
	1 Introduction
	2 Design and Implementation
	3 Validation and Evaluation
	3.1 IQ Switch Validation
	3.2 End-to-end Performance Evaluation

	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

